Nitrate (NO3-) uptake and distribution are critical to plant life. Although the upstream regulation of nitrate uptake and downstream responses to nitrate in a variety of cells have been well-studied, it is still not possible to directly visualize the spatial and temporal distribution of nitrate with high resolution at the cellular level. Here, we report a nuclear-localized, genetically encoded fluorescent biosensor, we named NitraMeter3.0, for the quantitative visualization of nitrate distribution in Arabidopsis thaliana. This biosensor tracked the spatiotemporal distribution of nitrate along the primary root axis and disruptions by genetic mutation of transport (low nitrate uptake) and assimilation (high nitrate accumulation). The developed biosensor effectively monitors nitrate concentrations at the cellular level in real time and spatiotemporal changes during the plant life cycle.