網站分析程式 research news-Agricultural Biotechnology Research Center. Academia Sinica
 
 
FLASH logo
FLASH logo
中文 | HOME | ACADEMIA SINICA | SITEMAP  
ABRC information system  
line
research news

Cindy Ast, Jessica Foret, Luke M. Oltrogge, Roberto De Michele, Thomas J. Kleist, Cheng-Hsun Ho & Wolf B. Frommer (2017) Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.Nature Communications(2017), doi:10.1038/s41467-017-00400-2


Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.
* link

何承訓
Figure. Arabidopsis seedlings expressing MatryoshCaMP6s report root cytosolic calcium elevation in response to salt shock.

  

SEMINAR more

*2019/03/04 10:30 AM
Dr. Guido Grossmann (Group Leader, the Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Germany)
TBA
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

Job Opening more

ADMINISTRATIVE RESOURCES