網站分析程式 Academia Sinica Agricultural Biotechnology Research Center
 
 
FLASH logo
FLASH logo
中文 | HOME | ACADEMIA SINICA | SITEMAP  
ABRC information system  
line
NEWS more

line
HIGHLIGHTS
Yang S-Y, Huang T-K, Kuo H-F, Chiou T-J (2017) Role of vacuoles in phosphorus storage and remobilization Journal of Experimental Botany: erw481
Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. We also highlight the importance of vacuolar P in buffering the cytoplasmic Pi concentration to maintain cellular homeostasis when the external P supply fluctuates, and present additional roles for vacuolar polyP and InsP besides being a P reserve. Furthermore, we discuss the possibility of alternative pathways to recycle Pi from other P metabolites in vacuoles. Finally, future perspectives for researching this topic and its potential application in agriculture are proposed. link

SEMINAR more

*2017/10/16 10:30 AM
Dr. Cris Argueso (Assistant Professor, Department of Bioagricultural Sciences and Pest Management, Colorado State University, USA)
Cytokinin-Induced Priming of the Plant Immune System
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

*2017/10/16 3:30 PM
Dr. Xianlin Han (Professor of Medicine and Biochemistry at the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, USA)
Lipidomics sheds light on diabetic neuropathy
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

*2017/10/16 2:00 PM
Dr. Stephen Blanksby (Director, Central Analytical Research Facility (CARF), Institute for Future Environments, Queensland University of Technology, Australia)
Advances in mass spectrometry for the identification of lipid isomers
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

Job Opening more

ADMINISTRATIVE RESOURCES


Ji-Rong Yang, Chieh-Yu Cheng, Chih-Yuan Chen, Chao-Hua Lin, Chuan-Yi Kuo, Hsiang-Yi Huang, Fu-Ting Wu, Yu-Chih Yang, Chia-Ying Wu, Ming-Tsan Liu*, and Pei-Wen Hsiao* (2017) A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Antiviral Research, 2017, 140: 62-75

Yao-Pin Lin, Meng-Chen Wu, and Yee-yung Charng* (2016) Identification of Chlorophyll Dephytylase Involved in Chlorophyll Turnover.The Plant Cell, 2016, 28, 2974-2990

Ya-Ting Chao, Shao-Hua Yen, Jen-Hau Yeh, Wan-Chieh Chen, Ming-Che Shih*(2017) Orchidstra 2.0—A Transcriptomics Resource for the Orchid Family Plant & Cell Physiol DOI:10.1093/pcp/pcw220

Yu-Yi Wu, Bo-Han Hou, Wen-Chi Lee, Shin-Hua Lu, Chen-Jui Yang, Hervé Vaucheret and Ho-Ming Chen (2017) DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation. The Plant Journal, 2017, 90(6):1064-1078

Choun-Sea Lin, Jeremy JW Chen, Chi-Chou Chiu, Han C.W. Hsiao, Chen-Jui Yang, Xiao-Hua Jin, James Leebens-Mack, Claude W. dePamphilis ,Yao-Ting Huang, Ling-Hung Yang, Wan-Jung Chang, Ling Kui, Gane Ka-Shu Wong, Jer-Ming Hu, Wen Wang, Ming-Che Shih (2017) Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. The Plant Journal. DOI: 10.1111/tpj.13525

Seasonal influenza viruses impact public health annually due to their continual evolution. However, the current inactivated seasonal vaccines provide poor protection against antigenically drifted viruses and require periodical reformulation through hit-and-miss predictions about which strains will circulate during the next season. To reduce the impact caused by vaccine mismatch, we investigated the drift-tolerance of virus-like particles (VLP) as an improved vaccine candidate. The cross-protective humoral immunity elicited by the H3N2-VLP vaccine constructed for the 2011-2012 season was examined against viruses isolated from 2010 to 2015 in Taiwan evolving chronologically through clades 1, 4, 5, 3B and 3C, as well as viruses that were circulating globally in 2005, 2007 and 2009. ...more
line
Recommend browser :IE 8.0, Firefox3.0 / 1024x768
No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan 115
TEL: +886-2-2651-5910 FAX: +886-2-2651-5600
Copyright 2010 ABRC, Academia Sinica. All Rights Reserved