網站分析程式 Academia Sinica Agricultural Biotechnology Research Center
 
 
FLASH logo
FLASH logo
中文 | HOME | ACADEMIA SINICA | SITEMAP  
ABRC information system  
line
NEWS more

line
HIGHLIGHTS
Yu-Yi Wu, Bo-Han Hou, Wen-Chi Lee, Shin-Hua Lu, Chen-Jui Yang, Hervé Vaucheret and Ho-Ming Chen (2017) DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation. The Plant Journal, 2017, 90(6):1064-1078
Dicer-Like (DCL) enzymes are able to process double-stranded RNA into small RNAs. Arabidopsis DCL4 and DCL2 each allow the post-transcriptional gene silencing (PTGS) of viruses and transgenes, but DCL2 activity is mostly obscured by DCL4. This hierarchy likely prevents DCL2 having any detrimental effects on endogenous genes. Indeed, dcl4 mutants exhibit leaf pigmentation under regular growth conditions. Here we report that the purple phenotype of dcl4 leaves correlates with carbohydrate over-accumulation and defective phloem transport, and depends on the activity of DCL2 and two enzymes, Suppressor of Gene Silencing 3 (SGS3) and RNA-Dependent RNA Polymerase 6 (RDR6), involved in double-stranded RNA synthesis. Further, this phenotype correlates with the down-regulation of two genes expressed in the apex and the vasculature, SMAX1-Like 4 (SMXL4) and SMXL5, and the accumulation of DCL2- and RDR6-dependent small interfering RNAs derived from these two genes. Supporting a causal effect, smxl4 smxl5 double mutants exhibit leaf pigmentation, enhanced starch accumulation and defective phloem transport, similar to dcl4 plants. Overall, this study elucidates the detrimental action of DCL2 when DCL4 is absent, and indicates that DCL4 outcompeting DCL2 in wild-type plants is crucial to prevent the degradation of endogenous transcripts by DCL2- and RDR6-dependent transitive PTGS. link

SEMINAR more

*2017/10/23 10:30 AM
Prof. Dr. Nicolaus von Wirén (Professor for Plant Physiology and Cell Biology at the University of Halle and Head of the Department for Physiology & Cell Biology at IPK Gatersleben, Germany)
Functions of AMT-type membrane proteins in radial ammonium transport and in ammonium-dependent lateral root branching
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

*2017/11/13 10:30 AM
Dr. Zhenbiao Yang (Professor, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, USA)
Mechanisms overarching rapid tip growth, growth guidance, and penetrative growth of pollen tubes
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

*2017/11/27 10:30 AM
Dr. Kin-Ying To(Associate Specialist, Agricultural Biotechnology Research Center, Academia Sinica)
Research and Development of the ABRC Transformation Core Mainly for Non-model Plants
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

Job Opening more

ADMINISTRATIVE RESOURCES


Yang S-Y, Huang T-K, Kuo H-F, Chiou T-J (2017) Role of vacuoles in phosphorus storage and remobilization Journal of Experimental Botany: erw481

Choun-Sea Lin, Jeremy JW Chen, Chi-Chou Chiu, Han C.W. Hsiao, Chen-Jui Yang, Xiao-Hua Jin, James Leebens-Mack, Claude W. dePamphilis ,Yao-Ting Huang, Ling-Hung Yang, Wan-Jung Chang, Ling Kui, Gane Ka-Shu Wong, Jer-Ming Hu, Wen Wang, Ming-Che Shih (2017) Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. The Plant Journal. DOI: 10.1111/tpj.13525

Ji-Rong Yang, Chieh-Yu Cheng, Chih-Yuan Chen, Chao-Hua Lin, Chuan-Yi Kuo, Hsiang-Yi Huang, Fu-Ting Wu, Yu-Chih Yang, Chia-Ying Wu, Ming-Tsan Liu*, and Pei-Wen Hsiao* (2017) A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Antiviral Research, 2017, 140: 62-75

Yao-Pin Lin, Meng-Chen Wu, and Yee-yung Charng* (2016) Identification of Chlorophyll Dephytylase Involved in Chlorophyll Turnover.The Plant Cell, 2016, 28, 2974-2990

Ya-Ting Chao, Shao-Hua Yen, Jen-Hau Yeh, Wan-Chieh Chen, Ming-Che Shih*(2017) Orchidstra 2.0—A Transcriptomics Resource for the Orchid Family Plant & Cell Physiol DOI:10.1093/pcp/pcw220

Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. ...more
line
Recommend browser :IE 8.0, Firefox3.0 / 1024x768
No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan 115
TEL: +886-2-2651-5910 FAX: +886-2-2651-5600
Copyright 2010 ABRC, Academia Sinica. All Rights Reserved