網站分析程式 Academia Sinica Agricultural Biotechnology Research Center
 
 
FLASH logo
FLASH logo
中文 | HOME | ACADEMIA SINICA | SITEMAP  
ABRC information system  
line

 

NEWS more

line
HIGHLIGHTS
Sakthivel Kailasam, Ying Wang, Jing-Chi Lo, Hsin-Fang Chang and Kuo-Chen Yeh* (2018) S-nitrosoglutathione works downstream of nitric oxide to mediate iron deficiency signaling in Arabidopsis The Plant Journal, DOI: 10.1111/tpj.13850
Several studies elucidated the transcriptional responses to iron (Fe) starvation, however, the Fe sensing and signal transduction machineries are poorly resolved thus far in plants. With this focus, by using chemical biology approach, we identified a small molecule R7, whose use inhibited the physiological and molecular responses of Fe starvation in Arabidopsis. R7 blocked the Fe starvation signaling from nitric oxide (NO) to the central transcription factor, FER-LIKE IRON-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). Exogenous applications of NO abduct, S-nitrosoglutathione (GSNO) were able to attenuate the R7 effect. R7 directly or indirectly decreased the endogenous GSNO levels in roots but not the NO levels. Our finding reveals that, under Fe limited situation the starvation signal from NO is passed to FIT through GSNO. link

PHOTOS more

2018/09/03 ABRC Seminar

2018/08/22 ABRC Seminar 本中心與東海大學生命科學研究中心教研合作協議簽約儀式 2018/06/11 ABRC Seminar

SEMINAR more

*2018/10/08 10:30 AM
Dr. Bernhard Grimm (Dean of the Life Sciences Faculty, Professor (C4) and Head of Department of Plant Physiology at the Institute of Biology, Humboldt-Universität Berlin, Germany)
Green or red? Synthesis of chlorophyll and heme - Multiple posttranslational control of glutamyl-tRNA reductase, the rate limiting enzyme of tetrapyrrole biosynthesis
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

*2018/10/29 10:30 AM
Dr. Ling Li (Assistant Professor, Department of Biological Sciences, Mississippi State University, USA)
A molecular tool to increase protein content and broad disease resistance in crops
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

JOB OPENING more

ADMINISTRATIVE RESOURCES


Kuo, H.-F., Hsu, Y.-Y., Lin, W.-C., Chen, K.-Y., Munnik, T., Brearley, C. A.* and Chiou, T.-J.* (2018) Arabidopsis inositol phosphate kinases, IPK1 and ITPK1, constitute a metabolic pathway in maintaining phosphate homeostasis. The Plant J. (doi:10.1111/tpj.13974)

Hsiang-chin Liu†, Jörn Lämke†, Siou-ying Lin†, Meng-Ju Hung, Kuan-Ming Liu, Yee-yung Charng*, Isabel Bäurle* (2018) Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. https://doi.org/10.1111/tpj.13958

Ming-Jung Liu*, Koichi Sugimoto, Sahra Uygun, Nicholas Panchy, Michael S. Campbell, Mark Yandell, Gregg A. Howe and Shin-Han Shiu* (2018). Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell DOI: http://www.plantcell.org/content/early/2018/05/09/tpc.18.00194

Lin W-Y, Lin Y-Y, Chiang S-F, Syu C, Hsieh L-C*, Chiou T-J* (2018) Evolution of microRNA827 targeting in the plant kingdom. New Phytologist 217: 1712-1725

Leong, S. J., Lu, W.-C. and Chiou, T.-J.* (2018) Phosphite-Mediated Suppression of Anthocyanin Accumulation Regulated by Mitochondrial ATP Synthesis and Sugar in Arabidopsis. Plant & Cell Physiology 59: 1158-1169

Emerging studies have implicated a close link between inositol phosphate (InsP) metabolism and cellular phosphate (Pi) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate Pi signaling remains unknown. ...more
line
Recommend browser :IE 8.0, Firefox3.0 / 1024x768
No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan 115
TEL: +886-2-2651-5910 FAX: +886-2-2651-5600
Copyright 2010 ABRC, Academia Sinica. All Rights Reserved