網站分析程式 Academia Sinica Agricultural Biotechnology Research Center
 
 
FLASH logo
FLASH logo
中文 | HOME | ACADEMIA SINICA | SITEMAP  
ABRC information system  
line

 

NEWS more

line
HIGHLIGHTS
Hsiang-chin Liu†, Jörn Lämke†, Siou-ying Lin†, Meng-Ju Hung, Kuan-Ming Liu, Yee-yung Charng*, Isabel Bäurle* (2018) Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. https://doi.org/10.1111/tpj.13958
Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon a subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least three days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes after the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated with histone H3 lysine 4 hyper-methylation during this time. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. link

PHOTOS more

Research Fellow Kuo-Chen Yeh appointed Director of the Agricultural Biotechnology Research Center

2018/10/29 ABRC Seminar 2018/10/18 ABRC Seminar The ABRC 19th Annual Poster Competition 2018

SEMINAR more

*2019/02/25 10:30 AM
Dr. Juine-Ruey Chen (RuenHuei Biopharmaceuticals. Inc.)
我的生技旅程: 感染症疫苗開發
Auditorium A134, Agricultural Technology Building, Academia Sinica

*2019/03/04 10:30 AM
Dr. Guido Grossmann (Group Leader, the Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Germany)
TBA
Auditorium A134, Agricultural Technology Building, Agricultural Biotechnology Research Center

JOB OPENING more

ADMINISTRATIVE RESOURCES


Lin W-Y, Lin Y-Y, Chiang S-F, Syu C, Hsieh L-C*, Chiou T-J* (2018) Evolution of microRNA827 targeting in the plant kingdom. New Phytologist 217: 1712-1725

Kuo, H.-F., Hsu, Y.-Y., Lin, W.-C., Chen, K.-Y., Munnik, T., Brearley, C. A.* and Chiou, T.-J.* (2018) Arabidopsis inositol phosphate kinases, IPK1 and ITPK1, constitute a metabolic pathway in maintaining phosphate homeostasis. The Plant J. (doi:10.1111/tpj.13974)

Leong, S. J., Lu, W.-C. and Chiou, T.-J.* (2018) Phosphite-Mediated Suppression of Anthocyanin Accumulation Regulated by Mitochondrial ATP Synthesis and Sugar in Arabidopsis. Plant & Cell Physiology 59: 1158-1169

Chung-Chih Yang, Cheng-Kuei Chang, Meng-Ting Chang, and Lie-Fen Shyur*(2018) Plant galactolipid dLGG suppresses lung metastasis of melanoma through deregulating TNF-α-mediated pulmonary vascular permeability and circulating oxylipin dynamics in mice. International Journal of Cancer,2018, 15;143(12):3248-3261. doi: 10.1002/ijc.31663.

Lin, Y.-C., Wang, J., Delhomme, N., Schiffthaler, B., Sundström, G., Zuccolo, A., Nystedt, B., Hvidsten, T. R., de la Torre, A., Cossu, R. M., Hoeppner, M. P., Lantz, H., Scofield, D. G., Zamani, N., Johansson, A., Mannapperuma, C., Robinson, K. M., Mähler, N., Leitch, I. J., Pellicer, J., Park, E.-J., Van Montagu, M., Van de Peer, Y., Grabherr, M., Jansson, S., Ingvarsson, P. K. and Street, N. R. (2018) Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. PNAS published ahead of print October 29, 2018

Unlike most ancient microRNAs, which conservatively target homologous genes across species, microRNA827 (miR827) targets two different types of SPX (SYG1/PHO81/XPR1)-domain-containing genes, NITROGEN LIMITATION ADAPTATION (NLA) and PHOSPHATE TRANSPORTER 5 (PHT5), in Arabidopsis thaliana and Oryza sativa to regulate phosphate (Pi) transport and storage, respectively. ...more
line
Recommend browser :IE 8.0, Firefox3.0 / 1024x768
No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan 115
TEL: +886-2-2651-5910 FAX: +886-2-2651-5600
Copyright 2010 ABRC, Academia Sinica. All Rights Reserved